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Software Testing Based on SDL 
Specifications with Save 

Gang Luo, Member, IEEE, Anindya Das, and Gregor v. Bochmann, Senior Member, IEEE 

Abstract-The signal save construct is one of the features 
distinguishing SDL from traditional high-level specification and 
programming languages. However, this feature increases the 
difficulties of testing SDL-specified software. We present a testing 
approach consisting of the following three phases: SDL specifi- 
cations are first abstracted into finite state machines with save 
constructs, called SDL-machines; the resulting SDL-machines are 
then transformed into equivalent finite state machines without 
save constructs if this is possible; and, finally, test cases are 
selected from the resulting finite state machines. Since there are 
many existing methods for the first and third phases, we mainly 
concentrate in this paper upon the second phase and come up 
with a method of transforming SDL-machines into equivalent 
finite state machines, which preserve the same input/output re- 
lationship as in the original SDL-machines. The transformation 
method is useful not only for testing but also for verifying SDL- 
specified software. 

Index Terms-CCITT SDL, communication software, finite 
state machines, protocol conformance testing, protocol verifica- 
tion, software testing, and SDL-machines. 

1. INTRODUCTION 
T PRESENT, the three formal specification languages A that have been accepted by international standards orga- 

nizations for specifying communication software are SDL [ 11, 
[6], LOTOS [13], and ESTELLE [14]. Among them, SDL is 
the one that is most widely used in industrial applications [15], 
[l],  [20]. Therefore, it is important to study the problem of 
testing SDL-specified software. It is noted that test selection 
methods developed for ESTELLE specifications (see for in- 
stance [ 161) can also be adopted for SDL specifications, since 
both languages are based on an extended finite state machine 
(EFSM) model. However, SDL contains a distinctive feature, 
the save constructs, which increases its descriptive power 
considerably by providing a concise formalism for expressing 
the indeterminate order of arrivals of input signals. On the 
other hand, as pointed out in [l], the save construct was the 
first of several divergences between SDL and CHILL-a high- 
level programming language recommended by CCITT-that 
complicates the transformation from one language into the 
other, and its presence raises an added challenge to testing 

Manuscript received April 1992; revised October 1993. This work was 
supported by the IDACOM-NSERC-CWARC Industrial Research Chair on 
Communication Protocols at the Universitt de Montreal, Montreal, P.Q., 
Canada. Recommended by S. H. Zweben. 

G. Luo was with the Departement d’IRO, UniversitC de Montreal, MontrCal, 
P.Q., Canada. He is now with the Department of Computer Science, University 
of Ottawa, Ottawa, Ont. KIN 6N5, Canada. 

A. Das and G .  v. Bochmann are with the Departement d’IRO, UniversitC 
de Montreal, Montreal, P.Q. H3C 3J7, Canada. 

IEEE Log Number 9214488. 

and verifying SDL-specified software. For this reason, several 
SDL-based test generation methods either prohibit the use of 
save constructs [18], [2] or do not address them at all [17]. 

In the area of testing EFSM-based software, it is a common 
practice to first transform EFSM’s into finite state machines 
(FSM’s) by neglecting or unfolding parameters 1191, 131; 
testing is then conducted based on the resulting FSM’s, since 
many effective test generation methods are available for FSM’s 
[9]-[ 1 I]. However, since SDL specifications are based on 
an EFSM model but extended with save constructs, they are 
usually transformed into FSM’s with additional save constructs 
[3], [4], called SDL-machines [5], instead of pure FSM’s. 
The test generation methods for FSM’s are not applicable 
to SDL-machines. Therefore methods are needed for testing 
SDL-machines. 

Some initial efforts have been made on generating tests 
for SDL-machines [3]-[5]. They all use a common key idea 
of transforming SDL-machines into equivalent FSM’s, which 
preserve the same input/output relationship as in the original 
SDL-machines. Then test cases can be generated from the 
resulting FSM’s using existing methods. A formal method for 
such an equivalent transformation was presented in [4] and a 
similar framework was introduced informally through exam- 
ples in [3]; but they cannot provide equivalent transformation 
for the case where a save construct has several inputs, a case 
which is quite common. The equivalent transformation method 
presented in [5] allows the existence of several inputs in a 
save construct. However, it is only applicable to a still-limited 
subset of those SDL-machines for which the equivalent FSM’s 
exist. 

In this paper we generalize the approach introduced in [5] 
to obtain an equivalent transformation method that works for 
a larger subset of SDL-machines than the one given in [5]. 
We first prove that not all SDL-machines can be modeled by 
equivalent FSM’s, though we find that in our experience most 
SDL-machines obtained from practical SDL specifications can 
be modeled by equivalent FSM’s. We then come out with 
an equivalent transformation method that works for a larger 
subset of SDL-machines than the one in [5]. We finally show 
that, for SDL-machines where every explicit transition has at 
least one output, our method works precisely when there is an 
equivalent FSM. 

We generate test cases for SDL specifications in the fol- 
lowing three phases. First, use the approaches as given in 
[3] and [ 191 to obtain SDL-machines from SDL specifications 
by neglecting or unfolding parameters. Second, transform the 
SDL-machines into equivalent FSM’s using our algorithm. 
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Fig. 1. SDL graphic symbols that are used in SDL-machines. 

Finally, generate the test cases for the resulting FSM’s by 
applying existing test generation methods for FSM’s. 

Our equivalent transformation method is also important for 
verifying SDL specifications. For example, SDL specifica- 
tions usually need to be abstracted into FSM’s for verifying 
a so-called deadlock-free property. This can be done by 
first abstracting SDL specifications into SDL-machines and 
then applying this transformation method to obtain equivalent 
FSM’s. 

The rest of the paper is organized as follows. Section I1 
is devoted to an introduction of SDL-machines and related 
notations. Section 111 studies the equivalent transformation 
from SDL-machines into FSM’s. Section IV handles test case 
selection for SDL-machines using the results of Section 111 
and analyzes the test coverage thus obtained. 

11. PRELIMINARIES 

A .  Informal Description of SDL-Machines 

We give in this section an informal introduction to a class 
of simplified SDL processes [ 6 ] ,  [7], [ 11, which we call SDL- 
machines [5]. An SDL-machine is a simplified SDL process 
that has only the following constructs: a) states, b) inputs, c) 
outputs, d) saves, e) transitions, and f) an input queue. It is 
actually a finite state machine with the extension of an input 
queue and save constructs. Fig. 1 lists a subset of SDL graphic 
symbols that are used to present SDL-machines. 

We now describe SDL-machines informally. The formal 
definition is presented in Section 1I.B. 

We first describe the syntax of SDL-machines, which is 
given in a graphical form. An SDL-machine consists of 1) 
a finite number of states, each of which may have a save 
construct, 2) a finite number of (explicit) transitions, each of 
which has one input and zero or more outputs, and 3) an input 
queue. A save construct may have one or more inputs. For an 
SDL-machine, the input of every transition of a given state is 
different from the inputs of any other transitions of the same 
state, and it is not any input specified in the save construct 
of the same state. Thus SDL-machines are deterministic state 
machines. This means that, given an SDL-machine, for any 
state S ,  and for any input sequence 2, the machine always 
produces exactly the same output sequence each time z is 
applied to S. Fig. 2(a) shows an example of an SDL-machine. 

We now describe the behavior of SDL-machines. Given an 
SDL-machine, every arriving input is first placed into the rear 
of the input queue. Assume that the queue is not empty and 
the machine is in a state S ;  then the following cases may arise: 

GD arrival of signals contents of 
the queue 

1. a arrives, is put 
into the queue and is 

/ 2. b arrives and is put 
into rhe rear of tbe queue. 

3. Then b is consumed 
by tbc wnsiticm tt. The 

s2. 
4. a is consumed 

, machine reaches the sBe I a I 
[by IhewnsitiontZ. I I 

(b) 

note: tl and !2 are transitions. 

(a) 

Fig. 2. Illustration of an SDL-machine. (a) An SDL-machine. (b) Illustration 
of behavior of the SDL-machine. 

Case 1: All inputs in the queue are inputs specified in the 
save construct of the state S .  In this case, the inputs are saved 
in the queue for future use; the SDL-machine waits for another 
input, and it will not do anything further before another input 
is received. 

Case 2: Among all inputs in the queue that are not specified 
in the save construct of the state S ,  there is an input b that is the 
nearest to the front of the queue. In this case, the following two 
situations arise: a) If b is attached to one of outgoing (explicit) 
transitions from S ,  it will be removed from the queue; the 
corresponding transition will be performed ( b  is said to be 
consumed by the transition), and the SDL-machine will move 
to a next state. b) If b is not attached to any outgoing (explicit) 
transition from S ,  it will be removed from the queue, but no 
(explicit) transition will be performed. In this situation, the 
input b is said to be consumed by an implied transition that 
starts from and goes back to the same state S without any 
output being sent. 

If a given SDL-machine does not have any save construct, 
the input queue becomes an first-in-first-out (FIFO) queue. The 
save constructs make the queue non-FIFO. 

We illustrate the functioning of SDL-machines with the 
example shown in Fig. 2. Assume that the machine is initially 
in the state S1 with the queue empty. An input a arrives; it is 
kept in the queue because a appears in the save construct of 
S1. Then an input b arrives; it is consumed by the transition 
t l ,  leading the machine from the state S1 to the state S2 with 
the output f sent. Finally, the a in the queue is consumed by 
the transition t2, leading the machine to the state S3 with the 
output g sent. 

B .  Formal Definitions of SDL-Machines and Related Concepts 

We formally define in this section the syntax and behavior 
of SDL-machines, as well as concepts and notations related to 
SDL-machines. The syntax of SDL-machines is presented in 
a symbolic form, as follows. 

Definition: SDL-Machines. 
An SDL-machine is a 6-tuple ( K ,  I ,  0, saveset, T ,  SO)  with 

1) K is a finite set of symbols, called states. 
2) I is a finite set of symbols, called inputs. 

an input queue where we have the following. 
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3) 0 is a finite set of symbols, called outputs. 
4) saveset is a function, saveset: K - Dowerset(I). 

TABLE I 
NOTATIONS FOR SDL-MACHINES 

\ ,  

Notations Meaning 5) T is a function, called transition function. 
T :  D - K x O* where D = {< S , a  > E K x I lu  
saveset(S)} and 0* denotes the set of sequences over 
0. 
We say that the SDL-machine has a transition from 
S1 to SZ with input a and the output sequence w, 
if T ( S 1 , a )  = < S2, w >. This is also denoted by 
S1 - a/w + Sp. If w = X (A stands for the empty 
sequence) and S1 = SZ (same state), we call the transi- 
tion an implicit transition (Note: In SDL specifications, 
such transitions are not explicitly defined); the other 
transitions are called explicit transitions. 

c l . b . c . d . r  

1 , .  1 1 , .  .r. y. z 

O ' .  '" 

s. (2. P 

l I1(s )  

inputs or outputs 
input or output sequences 

i is a natural number, (I' denotes a sequence of ri of 
length i , ~ '  denotes a sequence of 1% of length i. That 
is, (io = A,iso = A; and a' = r i ' - ' . f i ,  I , '  = t , ' - ' . t ,  

fori 2 1 .  
states 

i n ( S )  = { r r l 3 S - r i / u ?  + S ~ ( S - r i / w +  S l i s a n  
explicit transition). That is, i71(S) is the set of all 
inputs each of which is attached to an explicit 
transition from the state S .  

6) SO E K is the initial state of the SDL-machine. 
From this definition, a transition has only a single input 

0 r,rrf(w) pref  IS a function, called p r e h  funcrron, prrf: 
powerset(I* ) -+ powerset(1'). Given 
11' 6 vower set( I' ). -. \ , I  

but may have an output sequence, as assumed in SDL. 
States, inputs, outputs, transitions, and savesets in the symbolic 
notations correspond to states, inputs, outputs, transitions, and 
saves in the graphical notations of SDL-machines. As an 
example, for the SDL-machine of Fig. 2 we have 

p r e f ( l r )  = {.r113.r E 1&'3y E ( . r  = . r l . y ) } .  
pro j  is a function, called projecrion function, 
proj :I*  --t powerset([*). Given 
.I' E I * , p r o j ( . r )  = { y  E I*ly is a sub-sequence of 
.r, obtained by deleting zero or more inputs in . r } .  

pro j ( , r )  

K =  { S l , S 2 , S 3 } , I  = { u , b } , O  { f , g } , s a w e s e t ( S l )  = 
{ a } ,  saweset(S2) = saweset(S3) = 0 ( 0  stands for an empty 
set), the initial state S1 ,  explicit transitions: S 1  - b / f  -+ S2 
and S2 - a / g  -+ S3, and implied transitions:S2 - b/X 4 

S2. S3 - a/X 4 53 and S3 - b/X -+ S3. 
To make definitions less cumbersome, we assume that 

all SDL-machines being discussed are denoted as ( K ,  I ,  0, 
saveset, T ,  SO)  unless specified explicitly. We use the notation 
"." to represent the concatenation of two input sequences or 
two output sequences. 

Given a pair [S,x]  E K x I*, we call [S , x ]  a global state, 
which represents the fact that the SDL-machine is in the state 
S with the input sequence x in the input queue. K x I* is 
the set of all possible global states. Furthermore, we say that a 
global state [S,  x] is stable if z E saweset(S)*; and Q; denotes 
the set of all stable global states for an SDL-machine (note: 
G C K x I*).  A global state that is not stable is said to be 
unstable . If an SDL-machine is in a stable global state, then 
it is waiting in this global state and cannot consume any input 
in its queue before an additional input is received. 

We now define the behavior of SDL-machines using three 
functions: @, queue and out, called transfer function, queue 
function , and output function, respectively. S1@z = SZ and 
queue (SI, z) = z mean that, assuming an SDL-machine to 
be in the state S1 with X in the input queue initially, after the 
input sequence z is applied, the machine will eventually arrive 
in the state SZ with z in the input queue such that no inputs 
of z can be consumed if no further inputs are received, i.e., 
[SZ. z ]  is a stable global state. Furthermore, out(S1, x) stands 
for the output sequence eventually produced after applying the 
input sequence z to S1 when the machine is initially in the 
state SI with X in the input queue. The formal definitions are 
given below. 

Definition: Transfer function "@ ," queue function "queue," 
and output function "out." 

Given an SDL-machine, assume that S I ,  S2 E K .  I' = 
( ~ l ' . ~ a , - l . a , . u , + l . . . a n  E I*(u, E I , for  7 = 1,2 ;.., 71)  

and w E 0". @: K x I* -- K,que'ue : K x I* --+ I* and 
out : K x I* -+ 0* are defined as follows: 

i) if z # saveset(Sl)*,  then 
a) S1@al . az...a;...a, = SP@al . . .ai-l  . 

b) qsueue(S1, a1 . a2 . . . ai . . . a,) = queue(&, a1 . 
UZ+l . . ' a,  

a;-1 . a;+1 . . ' a,) 
c) out(s'l,al-a2. . . a2 ' . . U , )  = w.out(Sz,al..~ ai-1. 

a;+] . . . a,) where a1 . a2 . . . a;-1 E savese l (S~)* ,  
and S I  - ui/w + S2. 

ii) if x E saweset(SI)*, then 
a) SI& = S1 

b) queue(S1,z) = x 
c) OUt(S1,Z) = A. U 

S1@x = SZ and queue( SI, x) = z imply that if an SDL- 
machine is initially in the global state [SI, 21, then the machine 
will eventually arrive in the stable global state [Sa, 21, without 
receiving more inputs. Given a global state [S,z] and an 
input sequence y, we say that y leads the machine from 
[S , x ]  to a stable global state [SI, z ]  if S@z.y = SI  and 
queue(S,z.y) = z .  

As an example, for the SDL-machine shown in Fig. 2, we 
have 
S1Qa.a = S1,  queue(S1,u.u) = u.u, Slt2a.a.b = S3, 
queue(S1,a.a.b) = A, Sl@b = S2, and queue(S1,b) = A; 
out(S1,a.a)  = A, out(S1,a.n.b) = f . 9 ,  and out(S1,b)  = f .  

For the sake of convenience, we introduce several other 
notations for SDL-machines in Table I. 

We note that pref ( W )  is the set of all possible prefixes 
of sequences in the set W ;  for W = {a.b,a.c,b}, we 
have pre f (W)  = {a.b,a,a.c,  b , X } .  proj (x) is the set of all 
possible sub-sequences of the sequence z which is obtained by 
deleting zero or more inputs in z. For example, pr.oj(u.b.c) = 
{A, a,  b.c ,  a.b,a.c, b.c, u.b.c}.  
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Definition: Initially connected SDL-machines. 
A given SDL-machine is said to be initially connected if all 

states are reachable from the initial state SO through a sequence 
* of transitions. 0 

Without loss of generality, we assume that all SDL- 
machines considered in the rest of the paper are initially 
connected. If a given machine F is not initially connected, we 
may consider a submachine which is a portion of F consisting 
of all states with their save constructs, and transitions that are 
reachable from the initial state of F. The unreachable portion 
of the machine does not affect the input/output behavior of 
the machine. 

We note that in the case that the SDL-machine has no 
saveset, i.e. VS E K ( s a v e s e t ( S )  = 0), the machine is 
equivalent to a traditional FSM. In fact, in this case, the explicit 
and implicit transitions define a transition for each (state, input) 
pair. Even if the speed of the arrival of inputs is fast compared 
with the processing speed of the machine, and the inputs may 
“queue up” in the input queue, the input/output behavior, 
in terms of the output sequence produced for a given input 
sequence, is the same independently of the proceeding speed 
of the machine. Therefore we simply call in the following 
an SDL-machine without savesets an FSM. In the following 
we show how a general SDL-machine (with save) can be 
transformed into an equivalent FSM and how the testing 
methods developed for FSM’s can be applied to general SDL- 
machines. 

Consider an SDL-machine where the input queue contains 
as input sequence a1 . a2 . . . a; . . . a,, and the machine is in 
state S. As mentioned in the informal description of SDL- 
machines given earlier, an input a; in the queue may eventually 
be removed and trigger a (explicit or implicit) transition, say 
S1 -a ; /w  + SZ. In this case, we say that a; will be consumed 
by the transition SI - a; /w + S2 when a1 . a2 ’ . . a; ’ . - a,  is 
applied to the state S. We give a formal definition as follows: 

Definition: An input consumed by an implied or explicit 
transition. 

Given a global state [S, x] with x = ~ 1 . ~ 2  + . . a; . . . a,, let 
queue(S, x) = a k l  .ak2 . . . U k m .  If i {kl, k2,. . . , km},  we 
say that the a; of x will be consumed by a transition when x 
is applied to the state S. In this case, for the a;, there must 
exist SI - a;/w + SZ, x1 E saweset(Sl)*, and 2 2  E I* such 
that S@al  a a2. . . a; . . . a, = Sl@zl . a; e x2 = S2@x1 . x2 
(note: i)SI@xl e a; . x2 is an intermediate step for deriving 
SQal .a~...a;..~a,, ii). S1,S2,x1, and x2 are unique). If 
the S1 -a;/w + Sp is an explicit transition (i.e., a; E in (&)) ,  
then we say that the input ai of x will be consumed by 
an explicit transition when z is applied to a state S ;  and if 
S1-a;/w + S:! is an implied transition (i.e., a; $! in(Sl)), we 
say that the input a; will be consumed by an implied transition. 

For the example of the SDL-machine shown in Fig. 2, let 
~ 1 . a 2 . a ~  = u a b ;  a2 will be consumed by an implied transition 
(i.e., by S3 - a / A  + 53 ) when nl.ap.a~ is applied to 
Sl.al, and a3 will be consumed by explicit transitions (i.e., 
by S2 - a / g  -+ S3 and S1 - b / f  4 S2, respectively) when 
a1 .a2.a3 is applied to S1. For a l  .a2 = a.a, none of the inputs 
of al.ap will be consumed by any transition when al.uZ is 
applied to S1. 

C. The Equivalence Relation for  SDL-Machines 

We present in this section a conformance relation for SDL- 
machines. Before generating test cases, one should answer 
the following question: What is the conformance relation to 
be checked between a specification and its corresponding 
implementation? Under a black-box-testing strategy where 
only the inputs and outputs of implementations are accessible, 
we answer this question by defining a so-called equivalence 
relation, which requires that two SDL-machines (a specification 
and its implementation) produce the same output sequence for  
every input sequence. This relation is the same equivalence 
relation for finite state machines [9], [lo] and is formally 
presented as follows: 

Definition: Equivalence between global states of SDL- 
machines. 

Given two SDL-machines F1 and F2 that have the same 
input set I and the same output set 0, let out1 and out2 be 
the output functions of F1 and F2; for two global states [S,. z] 
and IS,, y] in F1 and F2, respectively, 

[S,.x] and [S,, y] are said to be equivalent if Vz E 
0 

In this definition, F1 and F2 can be the same machine. 
Therefore, for two global states [S, ,x]  and [S,, y] in F1, 
[S,.x] and [S,,y] are equivalent if z E I*(out1(S2,x.z) = 

I* (out1 (S,, 5.2) = O U t 2 ( S J  , y..)). 

O U t l ( S , ,  Y..) >. 
Definition: Equivalence between SDL-machines. 
Given two SDL-machines F1 and F2 that have the same 

inplit set I and output set 0, assuming that Sol and So2 are 
the initial states in F1 and F2, respectively, 

F1 and F2 are said to be equivalent if their initial global 
states [Sol, A] and [Soz, A] are equivalent. 

According to this definition, two SDL-machines F1 and 
F2 are equivalent if and only if ‘dx E I*(out l (Sol ,z)  = 
out2(S02,x)), where out1 and out2 denote the output func- 
tions of F1 and F2. The definition of equivalence relation 
serves as a guide to the development of test case generation 
methods. 

111. TRANSFORMING SDL-MACHINES 
INTO EQUIVALENT FSM’s 

On the basis of the equivalence definition given before, 
we study in this section a method of transforming a given 
SDL-machine into an equivalent FSM. The equivalent FSM 
is obtained by deleting all save constructs, by introducing 
additional states that do not have any save construct, and by 
incorporating additional transitions. 

A. An Example of an SDL-Machine Without an Equivalent FSM 
We show in the following that not all SDL-machines can 

be modeled by equivalent FSM’s, though equivalent FSM’s 
can be found for SDL-machines resulting from most practical 
applications. An example of an SDL-machine for which there 
does not exist any equivalent FSM is given in Fig. 3. The 
following arguments show that this SDL-machine does not 
have any equivalent FSM. 

Consider the SDL-machine shown in Fig. 3. We have 
out(Sl ,ai .b)  = x.yi, for i = 1 , 2  :..; i.e., one of 
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Fig. 3. An example of an SDL-machine without any equivalent FSM. 

the different output sequences x.y, x.y2, . . . , x.y2,. . . is 
produced after input b is applied to the stable global states 
[SI. U ] .  [SI. a 2 ] ,  . . . , [SI. a'] ,  . . ., Therefore, 
from the definition of the equivalence of global states, none 
of the stable global states [SI, a ] ,  [Sl, a 2 ] ,  . . . , [Sl, a'],  . . . are 
equivalent. The input sequences a, u.a, . . . , a', . . ., lead this 
machine from the initial global state [Sl, A] to [Sl, a], [Sl, a2], 
. . . . [SI. a'],  . . ., respectively. Thus, for any SDL-machine 
equivalent to the one shown in Fig. 3, a , a . a , ~ ~ . , u z , ~ . ~  
must lead the machine from its initial global state to a set 
of stable global states TI, T2, . . . , T,, . . . that are equivalent 
to [SI, a ] ,  [SI, a 2 ] ,  . . . , [Sl, a'], . . . , respectively. None of 
T I .  T2, . . . , T, , . . . are equivalent. Such an equivalent machine 
must have an infinite number of stable global states, because i 
can take any positive integer value. An FSM has only a finite 
number of stable global states, however, because it does not 
have any save construct. (See the definition of FSM's given in 
Section 11-B.) Therefore, the machine shown in Fig. 3 cannot 
be modeled by any FSM, and we obtain the following result. 

Theorem 1 : There exist SDL-machines that cannot be mod- 
eled by equivalent FSM's. 

Therefore, we need to identify the classes of SDL-machines 
that can be modeled by equivalent FSM's and develop the 
equivalent transformation algorithm accordingly. 

respectively. 

B .  An Equivalent Transformation Method 

We first give an intuitive description of our method and then 
formally present it in the following three subsections. We need 
the following concepts for describing our method. 

Definition: Neutral-inputs (n-inputs). 
For a given state S E K and an input sequence x = 

a1 . a2"'ai  E saveset(S)*, we say that the input ai 
of z is an n-input of x at S if Vz E I* (the input a, will not 
be consumed by any explicit transition when 2.2 is applied to 
SI. 0 

This concept is based on the following intuitive idea: Given 
a state S E K and an input sequence z E saveset(S)*, for 

every y E I* ,  consider the application of z.y to S. Since any 
n-input of x at S when consumed is consumed only by an 
implied transition, it does not stimulate any output and can 
only invoke a self-loop at a state. For the example shown in 
Fig. 2, let al.ap.a3 = a.a.a, then a2 and a3 are n-inputs of 
al.a2.ag at the state S1. In the machine shown in Fig. 3, no 
inputs of the input sequences a' are n-inputs of a2 at the state 
S1, for i = 1 , 2 , .  . . . 

Definition: Useful-subsequence (u-sequence). 
For a given state S E K and an input sequence x E 

al.a2...ai . . . a k  E saweset(S)*, an input sequence z is 
said to be a u-sequence of x at S if z is obtained from 
x by eliminating zero or more n-inputs of x at S. (Note: 

The definition of this concept is motivated by the following 
intuition: Given a state S E K and an input sequence 
x E saveset(S)*, let z be a u-sequence of x at S. The 
same sequence of explicit transitions will be executed when 
x.y and z.y are applied to S ,  respectively. Therefore, y E 
I*(out(S,  z.y) = out(S, z.y)&S@x.y = S@z.y). According 
to the definition of u-sequences, a u-sequence of x at S is 
not necessarily unique. For the example shown in Fig. 2, let 
al.a2.ag = a.a.a; then al, ~ 1 . ~ 2 ,  ~ 1 . ~ 3  and al.ap.aj are four 
different u-sequences of al.a2.a3 at the state S1. 

The concepts of n-inputs and u-sequence are not used 
explicitly in presenting our algorithms, but they intuitively 
play a key role in developing the algorithms and are used 
in proving the validity of the algorithms. 

sequence). 
Given a state S E K and x E saveset(S)*, an input 

sequence y is called an e-sequence o f x  at S if there exists 
z E I* such that 

1) all inputs in z.z will be consumed when 5 . 2  is applied 
to S; and 

2) y is derived from x by eliminating all inputs in x that 
will be consumed by implied transitions when x.z is 
applied to S.  

Furthermore, x is said to be an e-sequence at S if x is itself 
an e-sequence of x at S. The set of all e-sequences at S is 
denoted as E s ;  that is, Es = {XI. is an e-sequence at S} .  0 

Intuitively, an e-sequence at S is a sequence of inputs in 
saveset(S) that can be consumed only by explicit transitions, 
and it contains no n-inputs at S .  From this definition, it follows 
that any prefix of an e-sequence at a state S is also an e- 
sequence at S;  that is, p re f (Es )  & Es. Therefore, by the 
definition of pref ,pref (Es)  = Es. For the example shown 
in Fig. 5, for the states A and B,  EA = {A, a,  b, a b }  and 
EB = {A} .  We note that Es is finite if and only if all e- 
sequences at S are of finite length. The construction of Es is 
not trivial and is presented later. 

We now present an intuitive description of our method. 
Given an SDL-machine F, if F is not an FSM, then the set 
of all possible stable global states 6 is infinite, representing 
an infinite memory. On the other hand, an FSM has only a 
finite number of stable global states, a finite memory. For a 
given stable global state [S. x] in F, the n-inputs of the input 

z E p r o j ( z ) . )  0 

Definition: Explicitly-consumed-save-sequence (e- 
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(a) (b) 

Fig. 4. An example of illustrating equivalent transformations. 

sequence x at the state S when consumed do not stimulate 
any output and only cause self-loops, since, when consumed, 
they are consumed only by implied transitions. Therefore, an 
equivalent machine does not need to remember the n-inputs of 
z; receiving z, it needs only remember one of the u-sequences 
of 5 at the state S. This guides us to construct an equivalent 
FSM for a given SDL-machine in the following manner. 

For an SDL-machine F with K = {SI, 5'2, . . . , S,}, let 
G1; = { [S i ,x ] I  z E saweset(Si)*} be the set of all stable 
global states related to the state Si, and a = 1 ,2 ,  . . . , n (note: 
G = G l l  UG12U.. .UGln) . To construct an equivalent FSM, 
we have the following two major phases: 

Phase 1: We partition every G l i  into a set of classes 
Ci l .  Ci2: . . . , C ; j .  . . .} such that all global states in the 
same class Cij are equivalent. Such a Cij is called an 
equivalence class. (Note: The partitioning is not necessar- 
ily unique.) 
Phase 2: If every 61i is partitioned into a finite 
number of equivalence classes (Ci1, Ci2, . . . , Cij, . . .}, 
then we construct an equivalent FSM containing states 
&I, Q 2 ,  . . . . Qm such that, for each Cij, there exists a 
state Q k  such that [Qk,A] is equivalent to the global 
states in Cij. However, if G l i  cannot be partitioned into a 
finite number of such equivalence classes, then the SDL- 
machine F cannot be modeled by an equivalent FSM, 
according to arguments similar to those for Theorem 1. 

For the example shown in Fig. 4(a), the set of all stable 
global states related to the state A , G ~ A ,  can be partitioned 
into two equivalence classes: {[A, A]} and {[A, ai]ai&i 2 l}; 
each of 6 1 ~  and 6 1 ~  is partitioned into one single class of 
{ [B .  A]} and {[C, A]}, respectively. G is partitioned into four 
equivalence classes: {[A, A]}, {[A, ai]lui & i 2 l}, {[B, A]} 
and {[C,A]}, which are a finite number of classes. We 
construct the equivalent FSM shown in Fig. 4(b), which 
contains the four states A,A&a, B, and C, such that 
[A, A], [A & a,  A], [B, A] and [C, A] in the FSM are equivalent 
to {[A.A]},{[A,ai]lai & i 2 l},{[B,A]} and {[C,A]} in the 
original machine, respectively. 

We note that, given a state Si, in order to partition each 
6 1 i ,  we need to first find Esi, the set of all e-sequences at 
Si, then partition every 61; with the help of Esi. In summary, 
our method consists of three major stages: 

Stage 1: Find Est for every state Si. 
Stage 2: Construct a so-called s-tree (save-corresponding- 

tree) for every state S, with the help of Es,. Each tree 
serves as a relation for partitioning the G1i into a finite 
set of equivalence classes. 
Stage 3: Construct an equivalent FSM with the help of 
the set of equivalence classes. 

The phase 1 described before is divided into the stages 1 
and 2, and the phase 2 is the stage 3. The three stages are 
presented in detail in the next three subsections, respectively. 

Finding e-Sequences: 
We present in this section a method of finding Es, the set of 

all e-sequences at a given state S in an SDL-machine. For the 
convenience of presentation, we first define several concepts. 
In order to use the terminology of graph theory, we define a 
graph form of SDL-machines, called SDL-graphs. 

Definition: SDL-graph. 
An SDL-graph G is a labeled directed graph such that there 

(1) There is a one-one correspondence between the nodes 
in G and the states in F. The node corresponding to a 
state S in F is labeled a pair S/saweset(S) that repre- 
sents the state S and the corresponding saweset(S); and 
for the sake of simplicity, S/0 may be denoted as S. 

(2) There is a one-one correspondence between the edges 
in G and the explicit transitions in F. The directed edge 
from a node S/saweset(S) to a node &/saveset(&) 
corresponds to an explicit transition S - a / z  --f Q, and 

.is labeled the pair a / x ,  which represents the input a 
and output sequence x of the transition; a / A  may be 
denoted as a. 0 

Given an SDL-machine, we can obtain a unique SDL-graph, 
and vice versa. States and explicit transitions in SDL-machines 
correspond to nodes and directed edges in their SDL-graphs. 
This enables us to use the terminology of graph theory for 
SDL-machines. Therefore, in the following, if we say edges 
and nodes or subgraphs of SDL-machines, we means the edges 
and nodes or subgraphs of corresponding SDL-graphs of the 
SDL-machines; similarly, the transitions and states of SDL- 
graphs refer to the transitions and states of the corresponding 
SDL-machines of the SDL-graphs. 

Given a state S in an SDL-machine F, in order to find 
Es ,  the set of all the e-sequences at S ,  we construct a so- 
called save-affected-graph of S, which is a subgraph of the 
machine F. The save-affected-graph of S intuitively captures 
the following notion: Let z be an e-sequence at 5' and any 
z E I"; if x.z is applied to S, then each input of 5, if 
consumed, can be consumed only by the explicit transitions in 
the save-affected-graph of S .  Therefore, checking the whole 
machine F for the construction of Es can be reduced to 
checking the save-affected-graph of S, a portion of F. 

exists an SDL-machine F satisfying the following: 

Definition: The save-affected-graph of a given state. 
Given an SDL-machine F, for a state S, an SDL-graph G 

is said to be the save-affected-graph of S if G is the smallest 
subgraph of F satisfying the following: 

If 1) z is an e-sequence at S and 2) z E I* is a shortest 
sequence such that all inputs in x.z are consumed by explicit 
transitions when z.z is applied to S, then all these explicit 
transitions are contained in G. 0 
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Fig. 5 

E 
. An example of SDL-machine. 

The root of the save-affected-graph of S is the state S .  In 
the following, we always present the save-affected-graphs in 
the form of SDL-graphs with all outputs and save constructs 
omitted. 

Constructing the save-affected-graphs involves constructing 
what we call save-graphs. Given an SDL-machine F, for a 
state Q and a set of inputs Z C saveset(&),  the save-graph of 
Q with respect to Z is a subgraph of F that intuitively captures 
the following notion: For every input sequence x E Z* and 
an input U E in(&), the inputs in x.u, when consumed, can 
be consumed only by the transitions in the save-graph of Q 
with respect to Z, except that the save-graph does not contain 
any edge from Q that has no successive edge with an input 
in Z. The complete definition of save-graphs is presented 
constructively by an algorithm given in Appendix 11. 

For simplicity, we always present the save-graphs in the 
form of SDL-graphs with all outputs and save constructs 
omitted. For the example shown in Fig. 5 ,  the save-graphs 
of state A with respect to { a ,  b}  and { b }  are shown in Figs. 
6(a) and 7(b), respectively, in the form of SDL-graphs. The 
save-graph of state D with respect to { b }  and { b ,  e} is shown 
in Figs. 6(b) and 7(a), respectively. 

We give here an intuitive description of the construction of 
the save-affected-graphs. Consider an SDL-machine F and a 
state S .  Let all transitions in the SDL-machine F be initially 
unmarked. First, mark all transitions and their adjacent states 
in F that belong to the save-graph of S with respect to 
saweset(S). Let G always represent the marked portion of 
F. Then, for every node Q of G except S ,  if saweset(S) n 
saveset(&) # 0, then construct the save-graph of Q with 
respect to saweset(S) n saveset(&),  say G1, and modify G 
by marking all transitions and their adjacent states of G1. A 
similar procedure is repeated until no more transitions and 
states can be added to G. The resulting G is the save-affected- 
graph of S. The algorithm for constructing the save-affected- 
graphs is given in Appendix 11. 

For the example shown in Fig. 5 ,  the save-affected-graphs of 
states A and D are shown in Figs. 6(c) and 7(c), respectively. 

(b) 

Fig. 6. (a) The save-graph of A with respect to [a.  b]. (b) The save-graph of 
D with respect to { b }. (c) The save-affected-graph of A. (d) 2.4 set. 

Zp(e.b. b)  

(b) (C) (d) 

A with respect to { 6). (c) The save-affected-graph of D. (d) ZD set. 
Fig. 7. (a) The save-graph of D with respect to {b, e } .  (b) The save-graph of 

Fig. 6(c) results from Fig. 6(a) and 6(b), and Fig. 7(c) results 
from Fig. 7(a) and 7(b). 

Simple save-affected-graph assumption: Given an SDL- 
machine and a state S, we say that S satisfies the simple 
save-affected-graph assumption if 
1) In the save-affected-graph of S, say G, for every state 

Q, if Q has an outgoing transition in G with an input in 
saweset(S),  then a) saweset(S)n,saweset(Q) = 0, and b) 
Q does not have more than one incoming transition in G. 

2) The save-affected-graph of S does not have any directed 

If a given state in an SDL-machine satisfies the simple save- 
affected-graph assumption, we use the following approach for 
finding Es,  the set of all e-sequences at S. 

cycle. 0 

Finding all e-sequences at a given state: 
Given an SDL-machine, for a state S that satisfies the simple 

save-affected-graph assumption, we construct Es as follows: 
1)  Construct 2 s  = {x E I*)y is an input sequence 

along a maximal directed path in the save-affected-graph 
such that the path starts from S, and x is derived by 
eliminating all inputs of y that are not in saweset(S)}.  

0 
We intuitively explain the above procedure. For a state S 

that satisfies the simple save-affected-graph assumption, the 

2) Construct Es = pref(2s). 
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EA=prefl(a.b, b)) 

=(La,  b, a.b) 

8 A&a.b 8rb'a 

(a) (b) 

Fig. 8. (a) E.4 set; (b) the .+tree of the state A. 

inputs in any e-sequence at S are consumed in the order of 
the inputs in the e-sequence. Therefore, an e-sequence at S 
must be a subsequence of an input sequence along a direct 
path starting from S in the save-affected-graph. Consequently, 
2s contains all maximal e-sequences at S; and thus Es is 

For the example shown in Figure 5, both the states A and D 
satisfy the simple save-affected-graph assumption. Then we 
derive ZA = {a.b,b} and ZD = {e.b,b} from the save- 
affected-graphs shown in Figures 6(c) and 7(c), respectively. 
Therefore, EA = pref({a.b,b}) = {A,a ,b ,a .b}  and ED = 
pref({e.b,b}) = {A, b, e,e.b}. 

For the case that the simple save-affected-graph assumption 
is not satisfied, we present in Appendix I11 an algorithm 
for finding Es provided the set Es is finite; however, that 
algorithm is less efficient than the one presented above. 

pref (ZS). 

Constructing .+Trees: 
We present in this section an algorithm for constructing 

an SDL-graph, called s-tree, for a state Si. The s-tree of Si 
intuitively serves as a relation for partitioning the 61;-the set 
of all stable global states related to the state S, as mentioned 
before-into a finite set of equivalence classes. 

Algorithm 1:  Construction of the s-tree (save- 
corresponding-tree) of a given state S .  

Input: An SDL-machine F, and a given state S. 
Output: The s-tree of the state S. 
Condition of applicability: Es is finite. 
Step 1: Construct Es, the set of all e-sequences at S .  
Step 2: Build a tree initially containing only one unmarked 
node labeled S & A. 
Step 3: If all leaves of the resulting tree have been marked, 
then stop with the resulting tree being the s-tree of the 
state S.  Otherwise. 

1)  

2 )  

Find in the resulting tree a unmarked leaf node 
labeled S & z, and mark the node. 
For every b in saveset(S), if Es n p r o j ( z )  # 
Es n proj(z .b) ,  then create an unmarked child 
node of S & z with label S & x.b in the tree. Go 
to Step 3. 0 

For the example shown in Fig. 5, using the EA and EB 
derived in Section 111-B.1 (shown in Figs. 8(a) and 9(a)), the 
algorithm constructs the s-trees of the states A and D, shown 
in Figs. 8(b) and 9(b), respectively. 

23 D&b.e.b 

(a) (b) 

Fig. 9. (a) ED set; (b) the 5-tree of the state D. 

The s-tree of S intuitively captures the following notion: 
Consider an SDL-machine F and a state S E K where Es 
is finite. For z E saveset(S)*, in the s-tree of the state S ,  
let the node S & z be the end state of the execution path 
obtained by applying z to the root state S & A (note: an s- 
tree is an SDL-graph, representing an SDL-machine); then, 
the input sequence z is a u-sequence of z at S. Consequently, 
for s,y E saveset(S)*, [S,z] is equivalent to [S,y] if the 
two execution paths obtained by applying z and y to the 
state S & A, respectively, have the same end state. Therefore, 
with the help of the s-tree of S ,  the set of all stable global 
states related to the state S is partitioned into a finite set of 
equivalence classes, each of which corresponds to a node in 
the s-tree of S. 

In Algorithm 1, Step 3(2) is intuitively based on the 
following idea: Given a state S E K ,  let an input 
sequence a1.a2 .. . a,-l.a, E saveset(S)*, n 2 1, and 
z = ~ 1 . ~ 2  . . .  a,-l (note: if n = 1, let z = A). If 
ES n p r o j ( z )  = Es n proj(z.a,), then the a, of z. a, 
is a n-input of z . a, at the state S. Therefore, there is no 
need to remember the a,. In this case, z is a u-sequence of 
z.a, at S. 

We note that the condition of applicability of Algorithm 1 
is decidable and can be determined using Algorithm 5 given 
in Appendix 111. 

We show that Algorithm 1 will terminate after a finite 
number of steps. Let an integer M be IEsl( lEsl is the number 
of elements of Es). We first argue that the s-tree of S does not 
have any path from the root that is longer than M - 1. Assume 
to the contrary that there exists a path p of length M ,  and that 
z.b is an input sequence along p with x E saveset(S)* and 
b E saveset(S). Then, according to Step 3(2), 

Es n p r o j ( z )  = Es since 1x1 + 1 = lEsl = M(I.1 is the 
length of J) .  Therefore, 

Es n p r o j ( z )  = Es n proj(z.b) = Es since Es n 
p r ~ j ( z )  C Es n proj(x.b) 

This implies that the s-tree cannot have the path p of length 
M .  This contradiction concludes that all paths in the s-tree are 
not longer than M - 1, thus the s-tree is finite. Consequently, 
according to Step 3(1), all leaves of the tree will eventually 
be marked, and therefore the algorithm will terminate since 
the tree is finite. 

Es. 

Equivalent Transformation: 
We present in this section an algorithm of transforming 

SDL-machines into equivalent FSM's with the help of s-trees. 
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We note that an s-tree is an SDL-graph, thus represents an 
SDL-machine. The nodes and edges in an s-tree are viewed as 
states and explicit transitions in the SDL-machine represented 
by the tree. 

Given an SDL-machine F where Es is finite for every state 
S E K ,  using s-trees, this algorithm derives an equivalent 
FSM F’ from the machine F intuitively in the following 
manner: 1) Initially let F’ be the portion of the SDL-machine 
that is obtained from F by deleting all save constructs. 2) 
Construct the s-trees of all states that have save constructs, 
and add all s-trees to F’ by merging every pair of the root 
state S & A of an s-tree and the state S of F’ to form a 
state S. Therefore, in this F’, a state S & z introduced from 
an s-tree is equivalent to every stable global state [S,z] in F 
where S & z is the end state of the execution path obtained by 
applying x to S in F’. 3) For every state S & z in F’, for every 
input a E in(S) ,  add a transition labeled a/out(S,z.a) to a 
state Q in F’ such that [Q,  A] is equivalent to the stable global 
state [S@z.a,  queue(S, ..a)] in F. Therefore the resulting F’ 
is equivalent to the original machine F. 

Algorithm 2: Equivalent transformation of SDL-machines 
to avoid save constructs. 

Input : An SDL-machine F. 
Output: An equivalent FSM F’. 
Condition of applicability: For every state S in K ,  Es 
is finite. 
Step 1: Draw the portion of the SDL-machine that is 
obtained from F by deleting all save constructs. 
Step 2: Assume that E represents { S ( S  E 
K & saveset(S)  # 0). Let E = {S1,S2,...,Sm} . 
For every state S E E, draw the s-tree of S using 
Algorithm 1. Rewrite all s-trees in SDL-graphical 
symbols. Let i := 1. 
Step 3: If z > m, then go to Step 4. Otherwise, for every 
node S, & .c in the s-tree of the state S, except for the 
root S, & A, and for every a E in(&), do the following: 

Let S, = S,@z.a. Find the node Q in the resulting 
graph such that: 

1) 

a) if S, E E,Q is the end state S, & z of 
the execution path in the s-tree of the state 
S, obtained by applying the input sequence 
queue(S‘,,z.a) to the state S, & A. 

E), Q is the state S, in 
the portion of graph created in Step 1. 

2) Create a transition from the node S, & z to 
the node Q with the label a/out(S,,.c.a). Let 
z := i + 1. Go to Step 3. 

Step 4: Rename every node S & A by S in the resulting 
graph. The resulting graph is the equivalent FSM F’. 0 

For the example shown in Fig. 5, from the s-trees of states 
A and D, we construct an equivalent FSM as shown in Fig. 
10. In Fig. 10, Step 1 draws the portion that is not contained 
in the dashed block. For the state A & a in the s-tree of A 
and the input c, Step 3(1) finds that the Q is the state D, 
and Step 3(2) creates the transition from A & a to D with 
the label c/out(A, n.c) where out(A, a.c) = S . Z .  For the state 

b) otherwise (i.e., S, 

A & a b  in the s-tree of A and the input c, Step 3( 1) finds that 
the Q is the state D & b, and Step 3(2) creates the transition 
from A & a.b to D & b with the label c /ou t (A ,  u.b.c) where 
out(A,a.b.c) = Z.Z. 

In Algorithm 2 only Step 3 may be repeated. It is performed 
for adding (a finite number of) outgoing transitions to the 
nodes of the s-trees. Since the number of nodes of the s- 
trees is finite, this algorithm terminates after a finite number 
of steps. The validity of the algorithm is given as follows. 

Theorem 2: Algorithm 2 transforms SDL-machines into 
equivalent FSM’s under the condition of applicability. Proof 
See Appendix I. 

Theorem 3: For a given SDL-machine where every ex- 
plicit transition has at least one nonempty output, there exists 
an equivalent FSM if and only if the condition of applicability 
of Algorithm 2 is satisfied. Proof See Appendix I. 

This theorem shows that the applicability condition of Algo- 
rithm 2 is a necessary and sufficient condition for the existence 
of an equivalent FSM for a given SDL-machine where every 
explicit transition has at least one nonempty output. 

IV. TEST DESIGN 

We give in this section a method for test selection from 
SDL-machines that is based on our equivalent transformation 
algorithm. We present a fault model that includes output faults 
and transfer faults that are usual for FSM’s (i.e., the output 
corresponding to a transition is erroneous or there is a fault in 
the next state reached by a transition [S]-[lO]) and the save 
faults that are specific to SDL-machines. We also discuss the 
fault coverage of the test cases derived by our method under 
the given fault model. 

Let SP be a specification and IUT its implementation. 
Assume that they have the same I and 0. The fault types 
are defined as follows: 

1) Output fault: We say that IUT has output faults if 1) IUT 
is not equivalent to SP and 2) SP can be obtained from 
IUT by modifying the outputs of one or more transitions 
in IUT. 

2) Transfer fault: We say that IUT has transfer faults if 1) 
IUT is not equivalent to SP and 2) SP can be obtained 
from IUT by modifying the end states of one or more 
transitions in IUT. 

3) Save fault: We say that IUT has save faults if 1) IUT 
is not equivalent to SP and 2 )  SP can be obtained from 
IUT by modifying the labels (i.e., inputs) in one or more 
save constructs in IUT. 

4) Hybrid fault: We say that IUT has hybrid faults if 1 )  IUT 
is not equivalent to SP and 2) SP can be obtained from 
IUT by changing the outputs and/or the end states of 
one or more transitions, and/or by modifying the labels 
in one or more save constructs, in IUT. 

For SDL-machines that satisfy the condition of applicability 
of Algorithm 2, we use the following procedure to generate 
test suites. 
Test generation procedure for a given SDL-machine: 

Step 1: Transform the given SDL-machine into an equiv- 
alent FSM using Algorithm 2. 
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Fig. IO. An equivalent FSM of the SDL-machine of Fig. 5. 

Step 2: Ignore the existence of the input queue of the 
resulting FSM, and generate test cases from the machine 
using one of the test suite development methods for finite 
state machines, such as the W-method [9], Wp-method 

0 
Under the fault model given before, which implies that we 
assume that no faults other than those in the fault model can 
occur, the fault coverage is given as follows. 

The fault coverage of the test suite: If the methods used 
in Step 2 of the test generation procedure outlined earlier 
can ensure the complete fault coverage for FSM’s under 
the fault model which only assumes the mixed output and 
transfer faults, the test suite can detect any fault specified 
in the fault model (i.e., all the four types of faults). This 

[IO],  UIO-method [ 111 or transition tour [ 121. 

is because save faults can be modeled as output faults and 
transfer faults in the transformed equivalent FSM’s. This 
implies complete fault coverage. 

For SDL-machines that do not satisfy the condition of 
applicability of Algorithm 2 ,  we use the heuristic approach 
given in [5] to transform a given SDL-machine to an FSM 
that is an approximation of the original SDL-machine. Test 
case selection is based on the resulting FSM. Therefore, the 
equivalence relation between specifications and implementa- 
tions cannot be fully guaranteed, and complete fault coverage 
cannot be guaranteed either. 

We note that in our experience most SDL-machines derived 
from practical SDL specifications have equivalent FSM’s. 
Therefore, our approach results in good fault coverage for 
most practical applications. 
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V. CONCLUSION 

The signal save construct is one of the features distin- 
guishing SDL from traditional high-level specification and 
programming languages. However, this feature increases the 
difficulties of testing SDL-specified software. We present a 
testing approach consisting of the following three phases: SDL 
specifications are first abstracted into finite state machines 
with save constructs, called SDL-machines; the resulting SDL- 
machines are then transformed to equivalent FSM's if this is 
possible; and, finally, test cases are selected from the resulting 
FSM's. We concentrate on the second phase and come up with 
an equivalent transformation algorithm for this phase, since 
there are existing methods for the first and third phases. The 
applicability condition of this algorithm is a necessary and 
sufficient condition for the existence of an equivalent FSM, 
for a given SDL-machine where every explicit transition has 
at least one nonempty output. 

In the area of verification for SDL-specified software, the 
specifications usually need to be abstracted into FSM's for 
verifying a so-called deadlock-free property. This can be done 
by first abstracting SDL specifications into SDL-machines and 
then applying this transformation method to obtain equivalent 
FSM's. Therefore, the equivalent transformation method could 
be useful in that area as well. 

APPENDIX I 
PROOFS OF VALIDATION OF THE METHOD 

In order to prove Theorems 2 and 3, we need several 
lemmas. For the sake of convenience, we assume in the 
following that all SDL-machines being discussed are denoted 
by ( K ,  I ,  0, saveset, T ,  SO) unless we specify them explicitly. 

Lemma 1: Given a state S E K and an input sequence 
z E snveset(S)*, let z be a u-sequence of z at S. Then, 

Proofi From the definition of u-sequences, z is obtained 
from x only by eliminating zero or more n-inputs of z at 
the state S .  For every y E I* ,  apply -c.y to S; then any of 
such n-inputs when consumed does not stimulate any output 
and only causes a self-loop at a state, since n-inputs when 
consumed are consumed by implied transitions. Therefore, the 
same sequence of explicit transitions will be consumed when 
s.y and z.y are applied to S, respectively. Thus the lemma 
holds. 0 

To prove the next lemma, we need the following concept. 
Dejnuion: Comparison of two strings of integers. 

Given two strings of integers ICl .k2 . . . k,, and 1, .12 . . . I , ,  of the 
same length where kl < IC2  < . . .  < k,, and 1, < lL < . . .  < l,,, 
we say that ICl . IC2  . . . IC,, is smaller than 1, .12 . . ' l,, if 

vy E I* (out(S, z.y) = out(S, z.y) & S@z.y = S@z.y ). 

3Z(kl.k2...kt-1 = 11.12...1,-1 & k, < l l ) .  

0 
Lemma 2:  Given a state S E K ,  let an input sequence 

a l . a 2 ~ ~ ~ a n - 1 . a n  E saueset(S)*,n 2 1, and x = 
~ 1 . ~ 2  ... a,-l (note: if n = 1, let .E = A). If Es nproJ(z) = 
Es nproj(z .a , ) ,  then the a, of 2.0, is a n-input of z.a, at 
the state S (note: in this case, .E is a u-sequence of z.u,, at S.). 

Proofi 
Part I: We note the following fact: Given a state S E K ,  
consider an input sequence . . . a,  E saveset(S)* and 
an input sequence w E I* .  Assume that U k l . U k 2  . . .  a k i  

is obtained from al .a2 . . . a, by eliminating all inputs that 
are consumed by implied transitions when a 1  . a 2  . . . a,  .w is 
applied to S. Then there does not exist any all . a 1 2  . . . ali such 
that 11.12 . . . l ;  is smaller than k l . k 2  . . . ki and a l l . a 1 2  . . . ali = 
akl . a k 2  . ' 'ski. 

Part 11: We now prove the lemma. 
(1) Es n proj (z )  = Es n proj(z.a,) 

assumption 
(2) 3m E I* (the U ,  in z.u,.w will be consumed 

by an explicit transition when z.a,.w is 
applied to the state S ) 

assuming the contrary 
of the lemma 

considering such a w in the following 

z.a, by deleting all inputs in x.a, that 
will be consumed by implied transitions when 
z.a,.w is applied to the state S 

(3) derive the sequence U k l  . a k 2  . . . U k i  .a, from 

(4) a k l . a k 2 .  ' .  a k i . a ,  E Es n prOj(z .U,)  
(3) 

(1) (4) 
(6) there must be a u l l . a 1 2  . . ' alia, such that 

( 5 )  a k 1 . 0 , k 2  . . . aki.f& E Es n prOj(X) 

i) 11.12 . . . 1i.m is smaller than k 1 . k ~  . . . k;.n, and 

iii) m < n 

(7) (6) is not true 

(8) The lemma holds 

ii) U 1 1 . U 1 2 . . . U l i . U m  = U k l . U k 2 " ' a k i . a n ,  and 

( 5 )  

Part I 

(2) causes the 
contradiction between 
(6) and (7). 

0 
Lemma 3: Given a state S E K ,  an input sequence x.a E 

saveset(S)* and a E saveset(S), if an input sequence z is a 
u-sequence of x at S, then z.a is a u-sequence of x.a at S.  

1) z is a u-sequence of z at the state S 

2) all n-inputs of 2 at S are n-inputs of x.a at 

3) z.a is obtained from x.a by eliminating zero 

4) z.a is a u-sequence of 5.a at S 

Pro& 

assumption 

S definition of n-inputs 

or more n-inputs of x.a at S 1) 2 )  
3) & definition of 

u-sequences . 
0 

We use in the following the terminology of SDL-machines 
for s-trees, since an s-tree is an SDL-graph representing an 
SDL-machine. The nodes and edges in an s-tree are viewed 
as states and transitions in the SDL-machine represented by 
the tree. 

Lemma 4: For a state S E K where all e-sequences at S 
are of finite length, for z E saveset(S)*,  in the s-tree of the 
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state S, let the node S & z be the end state of the execution 
path obtained by applying x to the state S & X (the root of the 
tree). Then, the input sequence z is a u-sequence of x at S. 

Proof: We prove the lemma by induction on the length 
of 5 .  

Induction Hypothesis: for x E saweset(S)*, we assume that 
S & z is the end state of the execution path obtained by 
applying x to the state S & A. Then the input sequence z is 
a u-sequence of x at S. 

Induction Base: x = A. S & X is the end state of the 
execution path obtained by applying x to the state S & A. 
In this case, since X is a u-sequence of x at the state S, the 
lemma holds. 

Induction Step: for x.a E saweset(S)*,  we assume that 
S & y is the end state of the execution path obtained by 
applying x.a to the state S & A. We argue that the input 
sequence y is a u-sequence of x.a at the state S as follows: 
1)  The Induction Hypothesis given before 

2 )  the y is either the z or the z.a 

3 )  z.a is a u-sequence of x.a at the state S 

4) the y is the z 

5) Es n p r o j ( z )  = Es nproj(z.a) 

6) z is a u-sequence of z.a at the state S 

7) z is a u-sequence of x.a at the state S 

assumption 

1)  

1) & Lemma 3 

assumption 

4) & Algorithm 1 

5) & Lemma 2 

6) & definition of 
u-sequence 

8) the y is a u-sequence of z .a  at the states 
2 )  & 3 )  & 

“4) * 7)” 
0 

For the sake of convenience, we assume the following: 
1)  F(K,  I ,  0, saveset, T ,  SO)  is an SDL-machine such that, 

for every state S E K, Es is finite. 
2 )  F’(K’, I ,  0, saveset’, T’, SO) is the resulting machine 

obtained from F using Algorithm 2. 
3) In contrast to the @ and out functions for F, Q’ and out’ 

refer to the corresponding functions for F‘, respectively. 
4) E = {SlS E K & saweset(S) # 0). 
It is easy to see: 1) for every state Q E K’, saveset’(&) = 

0. 2 )  K G K’ 3) all explicit transitions of F are explicit 
transitions of F’. 

Lemma.5: Let S E K and a E I .  Let S & z be a state 
in the s-tree of the state S for the machine F. The following 
statements hold: 

(a) out(S,  z .u) = out’(S, z.a); 
(b) S(c?‘z.u = (S@z.a)Q’queue(S, 2.a). 

Proof: 
Case I: a i74S). 
1)  a g‘ in(S) 

2 )  o,ut(S, z .a )  = X and out’(S, 2.u) = X 
assumption 

1 )  & z E saweset(S) 

2 )  
1) & z  E saweset(S) 

4) 

I )  & z E saweset(S) 

3 )  Statement a )  holds ( i .e . ,  out(S. z .u)  = out’(S. ..a)) 

4) SK3z.a = s 
5 )  (S@z.a)@’yueue(S, z .u)  = S@’yueue(S, 2.u) 

= S@’z.a 

& the s-tree of S 
6 )  Statement h) holds 

Case 11: a E zn(S).  
5 )  

1) a E i7L(S) 
assumption 

2 )  In F’, when z is applied to the state S, the machine 
will reach the state S & z without any output produced 

only a path in s-tree 
is executed 

will produce the output sequence out(S. z.u) 
3) In F’, when a is applied to the state S & z ,  the machine 

1) & Step 3 
of Algorithm 2 

4) The statement a) holds ( i .e . ,  out(S. 2.u) = out’(S, z .a ) )  

5) Let P = S@z.a 
2 )  3 )  

In F’, when a is applied to the state S&z,  the machine 
will reach the state Q where Q is decided as follows: 
i) If PE E, then Q is the end state P & y  of the 
execution path obtained by applying the input sequence 
queue(S, z .a)  to the state P (i.e., the node P&X in the 
s-tree). Therefore, Q = (S@z.a)@’queue(S, z.a).  

1) & Step 3 of 
Algorithm 2 

ii) if P E E, then Q is P.  In this case, 
P = S@z.a. queue(S. 2.u) = A. 
Therefore, still, Q = (S@z.a)@’queue(S,  z .u) .  

1)  & Step 3 of 
Algorithm 2 

6 )  The statement h) holds 
(i.e.,S@’z.u = (SQz.a)Q’queue(S. z . u ) )  

Lemma 6 :  Consider a state S E K and an input a E I .  Let 
S & z  be a state in the s-tree of S for the machine F. Then, for 
any w E I* ,  out’(S@z.a, queue(S,  z .a).w) = out’((S@z.u)@’ 
queue(S,  z . a ) ,w) .  

1) queue(S.  2.u) E snweset(S(c?z.u)* 

2 )  VP E KV’z E suweset(P)*(out’(P,,) = A) 

2 )  & 3.0 

Proof: 

definitions of queue and ((2 

in F’, when .E is applied to the 
P,  only a path within the 
s-tree of P will be executed 
without producing any output. 

1) 2 )  

VQ E K’( saveset’( Q )  = 0) 

3) out’(S@z.a, queue(S. 2.u)) = X 

4) v y, w E I*(out’(S,y.w) = out’(S, y).out’(S(Q’y. w)) 

5) for w E I * ,  out’(S@z.a.queue(S. z.a).w) 
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TABLE I1 
ADDITIONAL NOTATIONS FOR SDL-MACHINES 

= out’(SK3z.u. queue(S, ..a)). 

4) 

3 ) .  
0 

Theorem 2: Algorithm 2 transforms SDL-machines into 
equivalent FSM’s under the conditions of applicability. (That 
is. VS E KVx E I*(out (S ,x )  = out’(S,z)).) 

Proofi The proof is straightforward for the situation that 
none of the inputs of T is in zn(S). We now prove the lemma 
for the case that there exists at least one input in 5 belonging 
to rn(S) ,  by induction on the length of x. 

Induction Hypothesis: for a positive integer 2, VS E KVx E 
I*(l.rl < L ==+ out(S,z)  = out’(S,z)). 

Induction Base: 1x1 = 1. In this case, 5 E in(S) .  Therefore, 
the lemma holds because the machine F’ contains all explicit 
transitions of F. 

Induction Step: Assume x E I* and 1x1 = i > 1. Let 
s = x1.a.w where a E zn(S),zl E suveset(S)*, and E I* .  
In the s-tree of the state S, let the node S & z be the end 
state of the execution path obtained by applying the 2 1  to the 
state S & A. We have 

out’( (SOz.a)@/queue(S, z .a) ,  w )  

= oUf’((S(cllz.u)~’yueue(S, z .a ) ,  w )  

Ouf(S. X )  = Out(S, 21.11.71) 

2 = 51.u.w 

Lemmas 4 and 1 

definition of out 

Lemma 5(a) 

Hypothesis of induction 

Lemma 6 

Lemma 5(b) 

definition of out’& 
VQ E K’(suweset’(Q) = 0) 

the node S&z is the end 

= out(S.  z.cL.v) 

= out( S. z .a).out(S@z.a,  queue(S, z.u).v) 

= out’(S. z.w).out(S(Qz.a, queue(S, z.u).w) 

= out’(S. z.a).out’(S@z.u, queue(S, z.u).w) 

= out’(S. z.u).out’((S@z.a)@’queue(S, z.u), w )  

= out’(S, z.a).out’(S@’z.a, w )  

= out’(S. z.u.v) 

= out’(S, z1.a.v) 

We require the following concept for proving Theorem 3.  
Definition: Save-affected-path. 
Given a state SI E K ,  a path in an SDL-graph is called a 

1) the path starts from the state SI, and 
2) if the path is represented in the following form, called a 

save-affected-path from S1 if 

normal form (note: this is a unique form): 

2 3  SI - b1 + Q1 = X I  + S 2  - b2 -+ Q2 = x 
S, . . .S ,  - b, + Qm = X, * Sm+l 

where m 2 1, bi $! saveset(&), and xi E 
saveset(Sl)* for i = 1 , 2 , .  . . , m, 
then zi E (nf=l(saweset(Sk))* for i = 1 ,2 , . . . ,m ,  
and x, # A. 0 

Lemma 7: Given a state S, all e-sequences of the state S 
are of finite length if and only if none of the save-affected- 
paths of S contain any directed cycle that has at least one 
transition with an input in saveset(S). 

Proof: This theorem is evident from the definitions of 

According to Lemma 7, checking the conditions of applica- 
bility of Algorithms 1 and 2 is reduced to checking whether, 
for every state S ,  all save-affected-paths of S do not contain 
any directed cycle that has at least one transition with an input 
in suweset(S). 

Theorem 3: For a given SDL-machine where every explicit 
transitim has at least one nonempty output, there exists an 
equivalent FSM if and only if the condition of applicability of 
Algorithm 2 is satisfied. 

Proof: ( I .  Suficiency): Theorem 2 proves that if the 
condition of applicability of Algorithm 2 is satisfied, then there 
exists an equivalent FSM. 

( I I .  Necessity): We prove in the following that the condition 
is also necessary. Assume the contrary that given an SDL- 
machine F, there exists S in K such that not all e-sequences 
of the state S are of finite length. According to Lemma 7, 
there must exist a state S in K and a save-affected-path from 
S such that the path contains a directed cycle which has at 
least one transition with an input in saveset(S). In this save- 
affected-path, we find the shortest path p from S to the cycle, 
and we assume that 
i) 21 is the input sequence along the path p ,  

ii) Q is the end state of the path p ,  
iii) 5 2  is the input sequence along the cycle from Q to itself, 
iv) y1 is obtained by eliminating all the inputs of x1 that do 

v) z1 is obtained by eliminating all the inputs of x1 that 

vi) y2 is obtained by eliminating all the inputs of 5 2  that do 

e-sequences and save-affected-paths. 0 

not belong to saveset(S), 

belong to saweset(S), 

not belong to saweset(S), 
state of the execution path 
in the tree when the 2 1  is 
applied to the state S&A 

vii) z2 is obtained by eliminating all the inputs of x2 that 
belong to saveset(S), 

viii) since F is initially connected, there must exist a path in 
F from the initial state SO to the S; let 5 0  be the input 
sequence along such a path. 

Part A: We first argue that none of the stable global states 

= out’(S,n) = z1.a.v. 
0 

For the sake of convenience, we introduce in the following 
additional notations for SDL-machines. [S ,  YI . Y ~ I ,  [S,  YI .$I1 . . . , [S,  ~1 .Y;], . . . are equivalent. 
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Consider two stable global states [S, y1.y;] and [S ,  y1 .yi+k], 
for i = 1 . 2 , 3 , . . .  and k = 1 , 2 , 3 , . . .  
1) given P E K ,  and z,y E I * ,  if out(P,x .z)  # out(P,y .z)  

for some z E I * ,  then the two global states [P; x] and 
[P. y] are not equivalent 

definition of equivalence 
2) let xp  = v.a.711 where a E saveset(S)  and no input of 11 is 

in su,ueset(S) 
definition 

3) if v = A, then for 21.z; E I*, 

(note: out(S, yl.yi+k.zl.z;) 

if v # A, then for z1.zi.a E I * ,  

(note:out(S, y1.y;+‘.zl .z;,.w) 

out( s. y1 .y;fk .z1.z;, # ovt( s, y1 .y;.z1 2;).  

= ou t (S ,y l .y i . z l . z ; ) . o~ t (Q ,g~)  ) 

out (S .  y* .&+” z1 ..;.?I) # out ( S ,  yI .g; .z1.z; .v) 

= out(S, y1 .y;.zl .z;.v).out(Q@v, $)) 
definition of out & 2 )  & 
“every explicit transition of F 

has at least one nonempty 
output” & 

“the cycle has at least 
one transition with an input 
in saveset( S)” 

4) [S, y1 .&I and [S;  y1 . ~ i + ~ ]  are not equivalent 

5) none of the stable global states [S, y1 .y2], [S, yl.yi], 
1) 3 )  

. . . ~ [S ,  y1 .y;], . . . are equivalent 
4) 

Part B:  We argue that there does not exist any 
equivalent FSM for the given SDL-machine F. 
According to Part A, none of the stable global states 

Consequently, for any SDL-machine equivalent to F, the 
input sequences zo.yl.yz,xo.yl.y22,... ,zo.y1.y;, . . .  must 
lead the machine from its initial global state to a set of 
stable global states TI , T2, . . . , Ti, . . . that are equivalent to 
[S, y1.y2], [S, ~1.~221, .  . . , [S, y1. yi], . . ., respectively. None of 
Tl , T2. . . . , Ti , . . . are equivalent. Thus, such an equivalent 
machine must have an infinite number of stable global states 
since i can take any positive integer value. An FSM only 
has a finite number of stable global states since it does not 
have any save construct. Therefore, there does not exist any 
equivalent FSM for the given SDL-machine F. 

Part C:  From Part B, if the give SDL-machine F does not 
satisfy the condition of applicability of Algorithm 2,  then there 
does not exist any equivalent FSM for F. Therefore, if there 
exists an equivalent FSM for the give SDL-machine F, then F 
must satisfy the condition of applicability of Algorithm 2. 0 

[S ,Yl .Y2] ,  [S,Yl.Yi],. . . ,  [ s , Y l . Y ;  I , . ’ . ,  are equivalent. 

APPENDIX I1 
ALGORITHMS FOR CONSTRUCTING SAVE- 
GRAPHS AND SAVE-AFFECTED-GRAPHS 

Given a state S in an SDL-machine and a set of inputs 
Z C saveset(S) ,  we define a so-called save-graph of S with 
respect to Z that intuitively captures the following notion: 
For every input sequence z E Z* and an input a E in(S), 
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the inputs of L.U can only be consumed by the transitions 
in the save-graph of S with respect to Z. We formally give 
a constructive definition of save-graphs by the following 
algorithm. Note that we always present save-graphs in the form 
of SDL-graphs with all outputs and save constructs omitted. 

Algorithm 3: Construction of the save-graph of a given 
state. 

Input: An SDL-machine F, a given state S ,  and a set of 
inputs Z C saursrt(S) .  
Output: The save-graph of S with respect to Z. 
Step 1: Let all transitions in the SDL-machine F be ini- 
tially unmarked. Mark the state S .  Let G always represent 
the marked portion of F (thus G initially contains only the 
state S) .  
Step 2: Find in F all transitions starting from S such that 
the end state of such a transition has an outgoing transition 
with an input in Z. Modify G by marking these transitions 
and their end states. 
Let V be the set of all the end states of the marked 
transitions resulting from this step. 
Step 3: Find in F all transitions starting from S such that, 
for the end state Q of such a transition, Z n S(I u e w t  ( Q )  # 
0. Modify G by marking these transitions and their end 
states. 
Step 4: Find all transitions with the inputs in Z, each of 
which can be reached from a state in V, along a directed 
path p in F with the inputs of all transitions in the path 
p belonging to Z. Modify G by marking these transitions 
and their end states. 
Step 5: Stop. The resulting G is the save-graph of S with 
respect to Z. The root of the save-graph is the state S. [7 

Figs. 6 and 7 show the examples of the save-graphs. 
In the following, an elementary path refers to a path where 

Algorithm 4 :  Construction of the save-affected-graph of a 
all edges are distinct. 

given state. 
Input: An SDL-machine F, and a given state S. 
Output: The save-affected-graph of S. 
Step 1: Let all transitions in the SDL-machine F be 
initially unmarked. Then mark all transitions and their 
adjacent states in F that belong to the save-graph of S 
with respect to saveset(S). Let G always represent the 
marked portion of F. 
Step 2: Find a state Q in G such that 

i) there exists an elementary path from S to Q; and 
if the path is presented in the following normal 
form: 

then x, E (nk=l(saveset(Sk))* for i = 
1.2,  ’ .  . . m. 
(Note: by the definition of normal form, vi 2 
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1. b, saveset(S1), and x, E saveset(SI)* for 

ii) let Z = n?=f,lsaveset(Sk), then Z # 0 and 
the save-graph of Q with respect to Z is not a 
subgraph of G (i.e., there is at least a unmarked 
transition in the save-graph.). 

Step 3: If a state Q has been found in Step 2, then 1) 
modify G by marking all transitions and their adjacent 
states in F that are contained in the save-graph of Q with 
respect to P, and 2) go to Step 2. Otherwise, go to next 
step. 
Step 4: Find a transition t in G such that 1)  the end state 
of the transition t does not have any outgoing transition 
in G, and 2 )  the input o f t  6 saweset(S). 
Step 5: If a transition t has been found in Step 4, then 
modify G by unmarking the t in F and go to Step 4. 
Otherwise, stop; and the resulting G is the save-affected- 
graph of S with its root being S .  

U 
In this algorithm, each application of Steps 2 and 3 marks 

at least one transition. According to Step 2(ii), if there is no 
unmarked transition in F, then no Q can be found in Step 2; 
thus Step 3 cannot be applied. Therefore, Steps 2 and 3 can 
be applied only a finite number of times, since F is a finite 
graph. Steps 4 and 5 are for making the save-affected-graph 
minimal. It is straightforward to prove that Steps 4 and 5 can 
be applied only a finite number of times also. Consequently 
this algorithm terminates after a finite number of steps. 

i = 1 , 2  :... m) 

APPENDIX I11 
A GENERAL ALGORITHM FOR FINDING ALL ,!?-SEQUENCES 

We present in this section an algorithm that, for a given 
SDL-machine and a state S, finds Es when Es is finite, or 
reports “Es is infinite” when Es is not finite. For ease of 
understanding, the given algorithm has not been optimized. 

Definition: Corresponding-e-sequence. 
Given a state S ,  for a save-affected-path p from S ,  an 

input sequence :E is called a corresponding-e-sequence of p 
if 3 y  E I”.  (All inputs in x . ~  will be consumed by explicit 
transitions in the path p when x.y is applied to the state S.), 
For a save-affected-path p from S, the set of all corresponding- 
e-sequences of the path p is written ce(p). (Note: X E ce(p).) 

0 
This concept is based on the following intuition: Given a 

state S ,  if Es is finite, then for every e-sequence x at S ,  there 
must be an elementary save-affected-path p from S such that 
:I: is a corresponding-e-sequence of p.  

In the following algorithm, we say that a save-affected-path 
p from a state S is maximal if there is no other save-affected- 
path p 1  from the state S such that p is a prefix (subpath) of 

Step 1: Find the set P that contains all maximal elementary 
save-affected-paths from the state S as follows: Assume 
that A4 is the number of all explicit transitions in F, and 
that $1 is the set of all elementary directed paths from S 
in F (note: P is a finite set.). 
1) Check the paths in $1 one by one, and find in $1 
all save-affected-paths from the state S that are either 
maximal or of the length M .  Let $2 be the set of these 
save-affected-paths. 
2) If none of the paths in $2 contains any directed cycle 
that has at least one transition with an input in saveset(S), 
then let P = $2 and go to Step 2. Otherwise, stop and 
report “Es is infinite.” 
Step 2: For every p E P, construct ce(p) as follows: For 
the path p in P, assume 

i) the path is represented in the following normal 
form (note: this is a unique form): 

S = Si - bl -+ Q1 = 5 1  

+ 5’2 - b2  + Q 2  = ~2 

S3.”Sm - bm -+ Qm = x m 

+ Sm+1 

where m 2 1, b, 6 saveset(S1) and xi E 
saveset(S1)’ for i = 1 , 2 , .  . . , m. 

ii) N p  is the number of all transitions with inputs in 
saweset(S) in the path p (i.e., N p  = CEl Ix,l). 

iii) saveset(S)NP is the set of all input sequences of 
length N p  over saveset(S). 
Then, do the following: 

Construct a set 8, in the following way: 
Initially, let B, = 0. Check every input 
sequence x in saveset(S)NP. If all inputs of 
x will be consumed by explicit transitions in 
the path p when x.bl . . b ,  is applied to S, 
then put z into 8,. (Note: the set 8, contains 
all e-sequences at the state S of length N p  
that can be consumed along the path p.) 
Construct ce(p) = pref($). 

Step 3: Construct Es = U P E P  ce(p). 0 
We now explain the algorithm. I) We first argue that Step 1 

finds all maximal elementary save-affected-paths from the state 
S when Es is finite. If none of the save-affected-paths from 
S contain any directed cycle that has at least one transition 
with an input in saveset(S) (i.e., Es is finite from Lemma 
7), then none of the maximal elementary save-affected-paths 
from S are longer than M ;  therefore, we can find all maximal 
elementary save-affected-paths from S by checking the set of 
all elementary directed paths from S in F, as described in 
Step l(1). 

P1. 

state. 

If there exists a save-affected-path from S containing a 
directed cycle that has at least one transition with an input 
in saveset ( S )  (i.e., Es is infinite from Lemma 7), then there 
must exist an elementary save-affected-path of the state S 
containing a directed cycle that has at least one transition with 
an input in saveset (5’); this is checked up in Step l(2) with 

AlRorithm5: Construction of all e-sequences of a given 

Input: An SDL-machine F, and a given state S.  
Output: 1. Es, the set of all e-sequences at S if Es is 
finite. 2. reporting “Es is infinite” if Es is infinite. 
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‘‘E5 is infinite” reported. If the algorithm does not stop in Step 
1(2), then Es is finite according to Lemma 7. 

constructs ce(p) for a save- 
affected-path p from the state S by checking exhaustively. 
Therefore, Step 3 constructs Es. 

Using the concept of the save-affected-graph, Algorithm 5 

[ IS]  0. Faergemand and R. Reed, Eds., SDL’YI Evolving Methods, Pror. 5th 
SDL Forum. 

(161 B. Sarikaya, G. von Bochmann, and E. Cemy, “A test design method- 
ology for protocol testing,” IEEE Trans. Software Eng., vol. SE-13, no. 
9, pp. 989-999, Sept. 1987. 

(171 F. Kristoffersen, L. Verhaard, and M. Zeeberg, “Test derivation for 
SDL based on ACTS,” in Proc. IFIP 5th Int. Conv. Formal Description 
Technioues. M. Diaz and R. Groz. Eds.. 1992. 

New York: North-Holland, 1991. 

’’) It ‘s easy to see that Step 

can be optimized by changing the statement “$1 is the set of 
all elementary directed paths from S in F” in Step 1, into “$1 
is the set of all elementary directed paths from S in the save- 
affected-graph of s.” Algorithm 5 could be further optimized; 
however, these opitimizations are not discussed in this paper. 
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